Skew left braces and isomorphism problems for Hopf–Galois structures on Galois extensions

نویسندگان

چکیده

Given a finite group [Formula: see text], we study certain regular subgroups of the permutations which occur in classification theories two types algebraic objects: skew left braces with multiplicative isomorphic to text] and Hopf–Galois structures admitted by Galois extension fields text]. We questions when such yield or involving Hopf algebras. In particular, show that some cases isomorphism class algebra giving structure is determined corresponding brace. investigate these context variety existing constructions literature. As an application our results classify isomorphically distinct algebras give on degree for prime numbers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Azumaya Galois Extensions and Skew Group Rings

Two characterizations of an Azumaya Galois extension of a ring are given in terms of the Azumaya skew group ring of the Galois group over the extension and a Galois extension of a ring with a special Galois system is determined by the trace of the Galois group.

متن کامل

Counting Hopf Galois Structures on Non-abelian Galois Field Extensions

Let L be a field which is a Galois extension of the field K with Galois group G. Greither and Pareigis [GP87] showed that for many G there exist K-Hopf algebras H other than the group ring KG which make L into an H-Hopf Galois extension of K (or a Galois H∗object in the sense of Chase and Sweedler [CS69]). Using Galois descent they translated the problem of determining the Hopf Galois structure...

متن کامل

Separate Zeros and Galois Extensions of Skew Fields

The notions separability and normality are related to this characterisation. In the case of skew fields polynomials often have infinitely many zeros, so a different way of counting zeros as distinct is needed. The well-known theorem of Gordon and Motzkin [Z] states that a polynomial of degree n has zeros in at most n conjugacy classes. This suggests one should count zeros of a polynomial by the...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Hopf Galois structures on Kummer extensions of prime power degree

Let K be a field of characteristic not p (an odd prime), containing a primitive p-th root of unity ζ, and let L = K[z] with x n − a the minimal polynomial of z over K: thus L|K is a Kummer extension, with cyclic Galois group G = 〈σ〉 acting on L via σ(z) = ζz. T. Kohl, 1998, showed that L|K has pn−1 Hopf Galois structures. In this paper we describe these Hopf Galois structures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra and Its Applications

سال: 2022

ISSN: ['1793-6829', '0219-4988']

DOI: https://doi.org/10.1142/s0219498823501189